Adaptation bei der Verarbeitung von Sinnesreizen: Kodierung von Kommunikationssignalen bei schwach Elektrischen Fischen

Jan Benda*, André Longtin & Len Maler
University of Ottawa, Ontario, Canada

*present address: ITB, Berlin, Germany
Part I: How small chirps are encoded by electroreceptors

- Weakly electric fish
- Communication I&II: Slow beats and small chirps
- Spike-frequency response
Part I: How small chirps are encoded by electroreceptors

- Weakly electric fish
- Communication I&II: Slow beats and small chirps
- Spike-frequency response

Theory: Spike-frequency adaptation
- Biophysical mechanisms
- General model
Part I: How small chirps are encoded by electroreceptors

- Weakly electric fish
- Communication I&II: Slow beats and small chirps
- Spike-frequency response

Theory: Spike-frequency adaptation

- Biophysical mechanisms
- General model

- High-pass filter due to spike-frequency adaptation
Part I: How small chirps are encoded by electroreceptors
- Weakly electric fish
- Communication I&II: Slow beats and small chirps
- Spike-frequency response

Theory: Spike-frequency adaptation
- Biophysical mechanisms
- General model

- High-pass filter due to spike-frequency adaptation

Part II: A synchronization-desynchronization code
- Communication III: Fast beats and large chirps
- Desynchronization
- Synchronization
Part I

How Small Chirps are Encoded by Electroreceptors

Weakly Electric Fish \textit{(Apteronotus leptorhynchos)}

Electric Organ Discharge (EOD)

600–1100 Hz
Weakly Electric Fish (Apteronotus leptorhynchos)

- Electric Organ Discharge (EOD)
- mV/cm
- Time [ms]

600–1100 Hz

- Prey detection
Weakly Electric Fish \textit{(Apteronotus leptorhynchus)}

Electric Organ Discharge (EOD)

600–1100 Hz

- Prey detection
- Communication
Communication I: Two Fish

Fish 1: EOD frequency f_1
Fish 2: EOD frequency f_2
Communication I: Two Fish

Fish 1: EOD frequency f_1
Fish 2: EOD frequency f_2

\Rightarrow Beat with frequency $\Delta f = f_2 - f_1$
Communication I: Two Fish

Fish 1: EOD frequency f_1
Fish 2: EOD frequency f_2

\Rightarrow Beat with frequency $\Delta f = f_2 - f_1$

Male – Male $|\Delta f| < 30$ Hz

Male – Female $|\Delta f| > 60$ Hz
Mostly emitted during male – male interaction ($\Delta f < 30 \text{ Hz}$)
Communication II: Small Chirps

short (14 ms) increase in EOD frequency (30–150 Hz)
Communication II: Small Chirps

short (14 ms) increase in EOD frequency (30–150 Hz)
Communication II: Small Chirps

EOD Fish 1 (male)
Communication II: Small Chirps

EOD Fish 1 (male) + EOD Fish 2 (male)

Chirp
Communication II: Small Chirps

EOD Fish 1 (male)

EOD Fish 2 (male)

Chirp Beat 5 Hz

Amplitude [mV/cm]

Beat 5 Hz

Chirp

Time [ms]

EOD Amplitude Modulation Fish 1
Communication II: Small Chirps

EOD Fish 1 (male)

EOD Fish 2 (male)

EOD Amplitude Modulation Fish 1

Amplitude [mV/cm]

0
0.5
1

Beat 5 Hz

Time [ms]

0
100
200

Chirp

ChirpBeat 5 Hz

Amplitude \[\text{mV/cm} \]
Communication II: Small Chirps

$\Delta f = 5 \text{ Hz}$
⇒ Two stimulus timescales: (slow) beat and fast chirp.
⇒ Two stimulus timescales: (slow) beat and fast chirp.
Electroreceptor Recordings: Setup
Spike-Frequency Response

In vivo recording of electroreceptor afferents (P-units)

$\Delta f = 10 \text{ Hz}$
Spike-Frequency Response

In vivo recording of electroreceptor afferents (P-units)

$\Delta f = 10 \text{ Hz}$
Theory:
A Universal Model for Spike-Frequency Adaptation

Phenomenon Spike-Frequency Adaptation

[Graph showing a spike train response to a stimulus over time (ms) and voltage (mV)].

- **Spike**: A burst of action potentials in response to a stimulus.

Axes:
- **Y-axis**: Voltage (V) in mV.
- **X-axis**: Time (t) in ms from -50 to 300.
Phenomenon Spike-Frequency Adaptation

- **Onset response**: f_0
- **Steady-state response**: f_∞

Graph showing a change in frequency over time with voltage and stimulus levels.
Onset & Steady-State $f-I$ Curve

- $I = 52$ dB
- $I = 63$ dB
- $I = 79$ dB
Onset & Steady-State $f-I$ Curve

$I = 52\,\text{dB}$

$I = 63\,\text{dB}$

$I = 79\,\text{dB}$

Onset

$f_0(I)$

$f_\infty(I)$

steady-state
Mechanism: Encoder Adaptation

- M-type currents
- AHP-currents
- Slow inactivation of Na currents

\[I-A \]
\[g(J) \]

Input Current \(I \)

Firing Frequency \(f(t) \)
M-type Currents
M-type Currents

\[I_M = \tilde{g}_M a (V - E_K) \]

\[\tau_a \dot{a} = a_\infty (V) - a \]
M-type Currents

\[I_M = \bar{g}_M a (V - E_K) \]

\[\tau_a \frac{d a}{dt} = a_{\infty}(V) - a \]
M-type Currents

\[I_M = \bar{g}_M a (V - E_K) \]

\[\tau_a \dot{a} = a_\infty (V) - a \]
M-type Currents

\[I_M = \tilde{g}_M a (V - E_K) \]
\[\tau_0 \dot{a} = a_\infty(V) - a \]
M-type Currents

\[I_M = \bar{g}_M a (V - E_K) \]

\[\tau a \dot{a} = a_\infty (V) - a \]

\[\Rightarrow \quad A = \langle I_M \rangle \]

\[\tau \dot{A} = A_\infty (f) - A \]

![Graph of M-type Currents](image-url)

- **f_0(I)**
- **f_\infty(I)**
- **\(\tau_{\text{eff}} \)**
- **Time average!**

Time axis:
- \(-50\) to 300 ms

Current density axis:
- 0 to 120 \(\mu \text{A/cm}^2 \)
Adaptation currents (I_M, I_{AHP}, ...) are ionic currents.

Ionic currents flow in parallel over the cell membrane

⇒ Adaptation currents A act **subtractively** on input current I:

$$I - A$$
Spike Generator and f-I Curve

Spike frequency $f = f_0(I)$

Input current I [μA/cm²]

Spike frequency f [Hz]
General Phenomenological Model

Biophysics of slow ionic currents \Rightarrow model for spike frequency:

$$f(t) = f_0(I)$$

Spike generator

J. Benda & A. Herz (2003), *Neural Computation* 15, 2523–2564
General Phenomenological Model

Biophysics of slow ionic currents \Rightarrow model for spike frequency:

$$f(t) = f_0(I - A)$$

Subtractiveness

![Graph showing spike frequency $f(t)$ as a function of input current I. The graph includes curves for $f_0(I)$ and $f_0(I - A)$, with labels for thresholds and averaged adaptation currents.]

- $f(t)$: spike frequency
- $f_0(I)$: onset $f-I$ curve
- I_{th}: threshold of f_0
- A: averaged adaptation current

J. Benda & A. Herz (2003), *Neural Computation* 15, 2523–2564
General Phenomenological Model

Biophysics of slow ionic currents ⇒ model for spike frequency:

\[f(t) = f_0(I - A) \]

\[\tau \dot{A} = A_\infty(f) - A \]

Adaptation dynamics

- \(f(t)\) spike frequency
- \(f_0(I)\) onset \(f\)-\(I\) curve
- \(I_{th}\) threshold of \(f_0\)
- \(A\) averaged adaptation current
- \(\tau\) adaptation time-constant

General Phenomenological Model

Biophysics of slow ionic currents ⇒ model for spike frequency:

\[f(t) = f_0(I - A) \]

\[\tau \dot{A} = f_\infty^{-1}(f) - f_0^{-1}(f) - A \]

Steady-state

- \(f(t) \): spike frequency
- \(f_0(I) \): onset \(f-I \) curve
- \(I_{th} \): threshold of \(f_0 \)
- \(A \): averaged adaptation current
- \(\tau \): adaptation time-constant
- \(f_\infty(I) \): steady-state \(f-I \) curve

How does it work?

\[f(t) = f_0(I) \]

\[A = 0 \]
How does it work?

\[A = 0 \]

\[f(t) = f_0(I) \]
How does it work?

\[A = 0 \]

\[f(t) = f_0(I - A) \]

\[\tau \dot{A} = f_\infty^{-1}(f) - f_0^{-1}(f) - A \]
How does it work?

\[f(t) = f_0(I - A) \]

\[\tau \dot{A} = f^{-1}_\infty(f) - f^{-1}_0(f) - A \]
How does it work?

\[f(t) = f_0(I - A) \]

\[\tau \dot{A} = f_\infty^{-1}(f) - f_0^{-1}(f) - A \]
How does it work?

\[f(t) = f_0(I - A) \]

\[\tau \dot{A} = f_\infty^{-1}(f) - f_0^{-1}(f) - A \]
Back to Weakly Electric Fisch & Small Chirps

In vivo recording of electroreceptor afferents (P-units)

$\Delta f = 10\text{ Hz}$
Spike-Frequency Adaptation!
Spike-Frequency Adaptation!

Spike frequency [Hz]

$\tau_{\text{eff}} = 5.5 \text{ ms}$

$f_0(I)$

$f_\infty(I)$

Stimulus I
$F-I$ Curves

Spike frequency [Hz] vs. EOD Amplitude I [mV/cm].

- **Baseline**
- **steady-state $f_\infty(I)$**
- **onset $f_0(I)$**
$F-I$ Curves

Spike frequency [Hz] vs. EOD Amplitude I [mV/cm].

- **Baseline**
- **Steady-state** $f_\infty(I)$
- **Onset** $f_0(I)$
\[F-I \text{ Curves} \Rightarrow f(t) = f_0(I - A) \]
$\Delta f = 5 \text{ Hz}$
Model Prediction

$\Delta f = 5$ Hz

- **Spike frequency**
 - 1000
 - 800
 - 600
 - 400
 - 200
 - 0

- **Amplitude**
 - 2.8
 - 2.4
 - 2
 - 1

- **Time [ms]**
 - -200
 - -100
 - 0
 - 100
 - 200

- **Response**
- **Model**
- **Data**

Stimulus

Data and model comparison for spike frequency and amplitude over time.
Model Prediction

$\Delta f = 5$ Hz

![Graph showing spike frequency and amplitude over time for model prediction with data and model responses. The graph has axes labeled 'time [ms]' on the x-axis, 'Spike frequency' on the y-axis, and 'Amplitude' on the opposite y-axis. The graph compares model and data responses with a stimulus waveform depicted in the bottom half.]
Model Prediction

\[\Delta f = 30 \text{ Hz} \]
Highpass Filter of Adaptation

Linear f-I curves \rightarrow Linear adaptation: $\tau_{\text{eff}} \approx 7 \text{ ms}, f'_0/f'_\infty \approx 6$

![Graph showing gain $|H_f|/f_\infty$ vs. stimulus frequency [Hz]. The graph shows a curve that rises from approximately 1 to 6 as the frequency increases from 1 to 100 Hz. There is a horizontal line at $f'_0/f'_\infty = 6$ and a vertical line at f'_cutoff, indicating the cutoff frequency.]
Highpass Filter of Adaptation

Linear f-I curves \rightarrow Linear adaptation: $\tau_{\text{eff}} \approx 7 \text{ ms}$, $f'/f'_{\infty} \approx 6$

![Graph showing the gain $|H_f|/f'_{\infty}$ versus stimulus frequency in Hz, with a cut-off frequency f'_{cutoff}.](chart.png)
Highpass Filter of Adaptation

Linear f-I curves \rightarrow Linear adaptation: $\tau_{\text{eff}} \approx 7$ ms, $f'_0/f'_\infty \approx 6$

- The high-pass filter’s cutoff frequency separates slow beats from fast chirps.

Part II

A Synchronization-Desynchronization Code for Natural Communication Signals

Slow Beat Modulates Firing Rate

In vivo recordings of electroreceptor afferents (P-units)

Beat $\Delta f = 20$ Hz
Fast Beat Synchronizes Electroreceptors

In vivo recordings of electroreceptor afferents (P-units)

Beat $\Delta f = 100 \text{ Hz}$
Fast Beat Synchronizes Electroreceptors

In vivo recordings of electroreceptor afferents (P-units)

Beat $\Delta f = 100$ Hz
Fast Beat Synchronizes Electroreceptors

In vivo recordings of electroreceptor afferents (P-units)

Beat $\Delta f = 100$ Hz
Two Social Contexts

Male – female interaction

- Fast beat (> 60 Hz)
- Synchronous response: spikes lock to stimulus on \(\approx 1 \text{ ms} \) timescale
Two Social Contexts

Male – female interaction

- Fast beat (> 60 Hz)
- Synchronous response: spikes lock to stimulus on ≈ 1 ms timescale

Male – male interaction

- Slow beat (< 30 Hz)
- Asynchronous response: modulation of firing rate
Communication III: Large Chirps

Signals emitted during male – female interaction ($\Delta f > 60$ Hz)

<table>
<thead>
<tr>
<th>Frequency [Hz]</th>
<th>Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1510</td>
</tr>
<tr>
<td>100</td>
<td>1050</td>
</tr>
<tr>
<td>150</td>
<td>500</td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
</tr>
<tr>
<td>550</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
</tr>
<tr>
<td>650</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td></td>
</tr>
<tr>
<td>750</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td></td>
</tr>
<tr>
<td>850</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td></td>
</tr>
<tr>
<td>950</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>1050</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>1150</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td></td>
</tr>
<tr>
<td>1300</td>
<td></td>
</tr>
<tr>
<td>1350</td>
<td></td>
</tr>
<tr>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>1450</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>1550</td>
<td></td>
</tr>
</tbody>
</table>

Amplitude [mV/cm]

-0.1

Frequency [Hz]

800

1200

1600

2000

500 Hz

18 ms
Communication III: Large Chirps

EOD Female

EOD Male

Chirp
Communication III: Large Chirps

EOD Female

EOD Male

Chirp

EOD Amplitude Modulation Female

Amplitude [mV/cm]

0 2 4 6

-30 -20 -10 0 10 20 30

Time [ms]

Beat 130 Hz

Chirp

Beat 130 Hz

Chirp
Single Unit Response to Large Chirps

In vivo recordings of electroreceptor afferents (P-units)

Beat $\Delta f = 100$ Hz
Large Chirps Desynchronize Response

In vivo recordings of electroreceptor afferents (P-units)

Beat $\Delta f = 100$ Hz

Chirp 24 ms 600 Hz
Large Chirps Desynchronize Response

In vivo recordings of electroreceptor afferents (P-units)

Beat $\Delta f = 100$ Hz
Large Chirps Desynchronize Response

In vivo recordings of electroreceptor afferents (P-units)

Beat $\Delta f = 180$ Hz
Synchronization/desynchronization between $\Delta f \approx 50$ and 200 Hz
Large Chirps Desynchronize Response

Dual unit recordings

Correlation

Beat Δf [Hz]

$n = 5$

- baseline
- beat
- chirp
Small Chirps Revisited

by Bill Ellis
Small Chirps Synchronize Response

In vivo recordings of electroreceptor afferents (P-units)

Beat $\Delta f = 10$ Hz

Firing rate modulation

Synchronization
Small Chirps Synchronize Response

In vivo recordings of electroreceptor afferents (P-units)

Beat $\Delta f = 5$ Hz
Summary

Male – female interaction:

- Fast beats ($\Delta f > 60$ Hz)
- Synchrony
- Large chirps desynchronize receptor population
Summary

Male – female interaction:
- Fast beats ($\Delta f > 60$ Hz)
 - Synchrony
- Large chirps
 - desynchronize receptor population

Male – male interaction:
- Slow beats ($\Delta f < 30$ Hz)
 - Firing rate modulation
- Small chirps
 - synchronize receptor population
Summary

Male – female interaction:
- Fast beats ($\Delta f > 60$ Hz)
 Synchrony
- Large chirps
desynchronize receptor population

Male – male interaction:
- Slow beats ($\Delta f < 30$ Hz)
 Firing rate modulation
- Small chirps
synchronize receptor population

Any change of the degree of synchrony could code a signal!
Summary

Male – female interaction:
- Fast beats ($\Delta f > 60$ Hz)
 - Synchrony
- Large chirps
desynchronize receptor population

Male – male interaction:
- Slow beats ($\Delta f < 30$ Hz)
 - Firing rate modulation
- Small chirps
 synchronize receptor population
- Spike-frequency adaptation
- High-pass filter